
An Object-Oriented Parallel Particle-In-Cell Code for Beam

Dynamics Simulation in Linear Accelerators

Ji Qiang and Robert D. Ryne

Ms H817, LANSCE-1

Los Alamos National Laboratory

Los Alamos, NM 87545

Email: jiqiang@lanl.gov, ryne@lanl.gov

Fax: 505-665-2906

Salman Habib

Ms B288, T-8

Los Alamos National Laboratory

Los Alamos, NM 87545

Email: habib@lanl.gov

Viktor Decyk

Physics Department,

University of California at Los Angeles

Los Angeles, CA 90024

Email: vdecyk@pepper.physics.ucla.edu

SUBJECT CLASSIFICATIONS: 77G05 and 77C05

KEY WORDS: object-oriented, particle-in-cell, beam dynamics, linear accelerators

1



Abstract

In this paper, we present an object-oriented three-dimensional parallel

particle-in-cell code for beam dynamics simulation in linear accelerators. A

two-dimensional parallel domain decomposition approach is employed within

a message passing programming paradigm along with a dynamic load balanc-

ing scheme. An important feature of this code is the use of split-operator

methods to integrate single-particle magnetic optics techniques with parallel

Particle-In-Cell (PIC) techniques. By choosing a splitting scheme that sep-

arates the self-�elds from the complicated externally applied �elds, we are

able to utilize a large step size and still retain high accuracy. The method

employed is symplectic, and can be generalized to arbitrarily high order ac-

curacy if desired. Performance tests on an SGI/Cray T3E-900 and an SGI

Origin 2000 show good scalability of the object-oriented code. We present, as

an example, a simulation of high current beam transport in the Accelerator

Production of Tritium (APT) linac design.

I. INTRODUCTION

The analysis and simulation of charged particle beam transport is an important subject in

accelerator design and operation. The increasing interest in high intensity beams for future

accelerator applications presents challenging problems that require one to understand and

predict the dynamics of beams subject to complicated external focusing and accelerating

�elds, as well as the self-�elds due to Coulomb interaction of the particles. One approach to

studying the behavior of these particles is to use envelope equations [1{3]. These equations

are a set of ordinary di�erential equations for the second order moments of the particle

distribution and can be calculated quickly. However, the envelope equations do not provide a

detailed description of the beam, and furthermore are not self-contained. Future accelerator

applications put extremely stringent requirements on particle loss, which is associated with

2



the low density, large amplitude halo of the beam. The need to model the details of the

beam distribution, in the presence of strong self-�elds, leads us to a full Poisson-Vlasov

description to better understand and predict the behavior of intense charged particle beams

in accelerators.

The Poisson-Vlasov equations can be solved using a phase space grid-based method or

a PIC method. The grid-based method is e�ective in one and two dimensions [4], but for

three-dimensional systems with six phase space variables, the grid-based method will require

an enormous amount of memory even for a coarse grid. Also, grid based methods may break

down when very small-scale structures form in the phase space. The PIC method has a much

lower storage requirement and will not break down even when the phase space structure falls

below the grid resolution. This method is widely used to study the dynamics of high intensity

beams in accelerators [5{7]. At present, most particle-based accelerator simulation codes run

only on serial computers. The computational time cost associated with using a large number

of numerical particles restricts that number, and limits the accuracy of the PIC calculation.

Parallelism can signi�cantly improve the accuracy of PIC simulation by enabling the use

of a larger number of particles and a �ner grid resolution. It also dramatically reduces

the computation time. In this paper, we present an object-oriented parallel PIC code for

beam dynamics simulation in linear accelerators. The use of parallel computing provides for

high performance and high accuracy, while the object-oriented approach gives the program

good maintainability, reusability, and extensibility. In addition to describing the object-

oriented implementation on parallel computers, we will also describe the use of split-operator

methods, which provide a powerful means to include space charge e�ects in single-particle

beam transport codes. The result is a multi-particle capability that combines sophisticated

techniques of magnetic optics with those of parallel PIC simulation.

The organization of this paper is the following: The physical model and numerical meth-

ods are described in Section 2. The parallel PIC algorithm using MPI on distributed parallel

machines is discussed in Section 3. The object-oriented software design for beam dynamics

simulation is given in Section 4. Performance tests are given in Section 5. An application of

3



the code to a simulation of the APT linac design is presented in Section 6. The conclusions

are drawn in Section 7.

II. PHYSICAL MODEL AND NUMERICAL METHODS

The equations governing the motion of individual particles in an accelerator (in the

absence of radiation) are Hamilton's Equations,

d~q

dt
=

@ ~H

@~p
;

d~p

dt
= �

@ ~H

@~q
; (1)

where H(~q; ~p; t) denotes the Hamiltonian of the system, and where ~q and ~p denote canonical

coordinates and momenta, respectively. Let � denote the six-vector of coordinates and

momenta. In the language of mappings, which are a major theme in modern accelerator

physics, we would say that there is a (generally nonlinear) map, M, corresponding to the

Hamiltonian H, which maps initial phase space variables, � i, into �nal variables, �f , and we

write

�f =M� i: (2)

Sophisticated techniques now exist to compute maps corresponding to externally applied

electromagnetic �elds to essentially any order, to combine and manipulate maps, to apply

maps to phase space coordinates (or functions of the coordinates), and to analyze maps [8].

Note that Hamilton's equations can be rewritten as

d�

dt
= �[H; �]; (3)

where [,] denotes the Poisson bracket. The corresponding equation governing the beam

distribution function, f(�; t), is simply the Liouville equation,

df

dt
=

@f

@t
� [H; f ] = 0; (4)

from which we obtain

4



@f

@t
= [H; f ]: (5)

It is straightforward to show that the evolution of a distribution function (i.e. the solution

of Eq. (5)) is also contained in M. Namely, a distribution function f(�; t) whose initial

value is f 0(�) = f(�; 0) evolves according to

f(�; t) = f 0(M�1�): (6)

So far we have implicitly assumed that we are dealing with particles subject only to

externally applied �elds. We can treat the dynamics in the presence of external �elds and

self �elds (i.e. space charge �elds) and including them in the single-particle Hamiltonian.

In many cases one can write

H = Hext +Hsc; (7)

where Hext denotes the Hamiltonian in the absence of self-�elds and Hsc denotes the Hamil-

tonian associated with the space-charge �elds. In accelerator physics, Hext is often an

extremely complicated function, perhaps containing hundreds of thousands of terms. This

is due to the fact that it normally involves Taylor expansion of the Hamiltonina in order

to perform high order perturbation theory around a reference trajectory. In contrast with

the treatment of external �elds, self-�elds governed by Hsc are not normally treated as a

power series in the canonical variables because the variation is too great over the domain of

interest. In many cases Hsc is simply proportional to the scalar potential �, which satis�es

the Poisson equation:

r
2�(~q) = ��(~q): (8)

The combination of Eq. 5 and Eq. 8 constitutes the Poisson-Vlasov system of equations.

Our approach to solving these equations involves the use of split-operator methods. As

just mentioned, beam dynamics calculations often involve a Hamiltonian that can be written

as a sum of two parts, H = Hext + Hsc. Such a form is ideally suited for the application

5



of symplectic split-operator methods [9]. More generally, consider a Hamiltonian that can

be written as a sum of two parts H = H1 +H2, where each part, separately, can be solved

exactly or to some desired accuracy or order. In other words, suppose that we can compute

the mappingM1 corresponding toH1 and the mappingM2 corresponding toH2. In our case

H1 includes the external �elds, andM1 can be computed to any order using the techniques

of Magnetic Optics; the second term, H2, corresponds to the space-charge �elds, and can be

dealt with using parallel particle simulation techniques. Given M1 and M2, the following

algorithm is accurate through 2nd order in � ,

M(�) =M1(�=2)M2(�)M1(�=2) ; (9)

where � denotes the time step. (In accelerator physics, one often uses a coordinate as the

independent variable. However, for the sake of this discussion we will continue to refer to �

as a time step). As a side note, if we were to use a di�erent splitting in which H1 depends

only on momenta and H2 depends only on positions, then this algorithm is the same as the

well-known leap-frog algorithm. However, the split-operator approach provides a powerful

framework capable of dealing with the far more complicated Hamiltonians often encountered

in accelerator physics. The method is easily generalized to more terms (i.e. more splittings)

if necessary. Furthermore, symplectic split-operator methods are easily generalized to higher

order accuracy in time. A well-known fourth-order algorithm is due to Forest and Ruth,

and an arbitrary order scheme was derived by Yoshida [10] [11]. There are also implicit

symplectic methods based on this approach that do not require the Hamiltonian to be split

into a sum of exactly solvable pieces [9].

If we treat M1 as corresponding to the external �elds and M2 as corresponding to

the space-charge �elds, Eq. 9 describes an algorithm to treat both single-particle magnetic

optics e�ects and space charge e�ects. A time step involves the following: (1) transport of

a numerical disribution of particles through half a step based onMext, (2) solving Poisson's

equation based on the particle positions and performing a space-charge \kick" (i.e. an

instantaneous change in momenta, since Hsc depends only on coordinates, henceMsc only

6



e�ects momenta), and (3) performing transport through the remaining half of the step based

on Mext. If the space charge is intense, this can be performed repeatedly on successive

pieces of a beamline element; if the space charge is weak, it may be possible to achieve

good accuracy by computing the space charge kicks infrequently, in which caseMext would

correspond to a string of elements within a half-step. Thus, an important feature of this

approach is that it enables one to use large time steps (i.e. large steps in the independent

variable) in the regime of weak or moderate space charge. Essentially, it enables one to

decouple the rapid variation of the externally applied �elds from the more slowly varying

space charge �elds. If more accuracy is required, one can use the 4th order method of Forest

and Ruth, although this requires 3 space charge calculations per full step instead of just

one, and since this dominates the execution time it is costly.

Finally, a subtle point is that, while most beam dynamics codes use a coordinate as the

independent variable (typically the longitudinal coordinate, z, in a linac code), Poisson's

equation has to be solved at �xed time. Thus, prior to every space charge calculation it is

necessary to convert from the canonical coordinates and momenta currently in use to the

more usual coordinates and momenta in which (x; y; z) are known at �xed time. Such a cal-

culation makes sense and is easily accomplished if the particle motion is essentially ballistic

over a distance corresponding to the bunch length, since a bunch contains a distribution of

arrival times, and they must all be moved to a �xed time.

In summary, split-operator methods provide the \glue" to join two major �elds, Magnetic

Optics and parallel particle simulation techniques. All that is required is (1) the ability to

compute maps corresponding to external �elds, (2) the ability to compute the space charge

�elds (normally accomplished using a parallel Poisson solver), and (3) a knowledge of the

particle positions at �xed times, or the ability to compute it.

The physical system for beam dynamics studies consists of the beam and the accelerat-

ing/transport system which in turn contains a number of accelerating and focusing elements.

These elements consist of drift spaces, magnetic quadrupoles, and RF accelerating gaps. The

Hamiltonians corresponding to these elements, in the linear approximation, which we will

7



denote by Kext, are as follows.

For the drift tube, Kext is [12]

Kext =
1

2
(P 2

x + P 2

y ) +
1

220�
2
0

P 2

t (10)

For the magnetic quadrupole, Kext is [12]

Kext =
1

2
(P 2

x + P 2

y ) +
1

2
k(z)(X2

� Y 2) +
1

220�
2
0

P 2

t (11)

where the focusing strength, k(z), is related to the quadrupole gradient according to

k(z) =
q

p0
g(z) (12)

For the accelerating RF gap, Kext is [13]

Kext =
�

2lp0
(P 2

x + P 2

y ) +
l

2�
[
1

p0
(
q

2!
e0sin�s)

2
�

q

2!
(e00 +

w2

c2
e)sin�s](X

2 + Y 2)

�

qe0sin�s

2p0!
(XPx + Y Py) +

m2!2l�

2(p0)3
P 2

t �
!qesin�s

2!2l�
T 2 (13)

where e is the electric �eld, �s is given by �s = !tg + �, and p0 is the design momentum.

In order to computeMext for the RF gap, one needs to numerically solve the equations of

motion for the design trajectory inside the gap. These equations are given by

(tg)0 =
�p

g
t =cq

(pgt )
2
�m2c4

(14)

(p
g
t )

0 = �qe(z)cos(!tg + �) (15)

Lastly, in addition to the Hamiltonians for the various external elements, we also need the

Hamiltonian corresponding to the space charge �eld. This is given by

Kself =
q=�c

l�g(g)2
� (16)

which includes electrostatic �elds and azimuthal magnetic �elds. The potential � can be

obtained by convolving the charge density with a Green's function. In our code, the charge

density is obtained by depositing the particles onto a grid using a cloud-in-cell (CIC) scheme.

The potential is expressed as

8



�p;q;r =
X

Gp�p0;q�q0;r�r0�p�p0;q�q0;r�r0 (17)

where G is the Green's function on the grid, and � is the charge density on the grid. Often,

the beam size is much smaller than the inside wall radius of the accelerator, in which case

we may treat the beam as an isolated system. In such a case, the above convolution can be

calculated using a Fast Fourier Transform (FFT) technique given by Hockney [14].

III. PARALLEL PARTICLE-IN-CELL ALGORITHM

A message passing programming paradigm with MPI (Message Passing Interface) is

employed in our parallel particle-in-cell simulation. MPI is a standard library of message

passing programming bound to C (C++) and Fortran [15]. In this paradigm, a computer

program creates one or more processes. Each process can execute the same program or

di�erent program with local data. In most implementations, each process is mapped to a

physical processor with a unique identi�cation number. When the data from more than

one processor is required, explicit communication is performed by calling library routines to

send or receive messages from other processors. Hence, in this programming model, the pro-

grammer has to control the data distribution on the processors and communication among

processors. This gives it the advantages of exibility and better performance. However,

this also increases the di�culty of parallel programming. Applying object-oriented design

to parallel message passing programming helps to encapsulate the details of communication

and data distribution. This enables the user to manage the applications at a higher level.

A two-dimensional domain-decomposition approach is employed in the parallel particle

simulation [16,17]. A schematic plot of the two-dimensional decomposition on the y-z plane is

shown in Fig. 1. The solid grid lines de�ne the computational domain grids. The dashed lines

de�ne the local computational domain on each processor. Here, the boundary grids are the

out-most grids inside the physical boundary. The guard grids are used as temporary storage

of grid quantities from the neighboring processors. The physical computational domain is

de�ned as a 3-dimensional rectangular box with range xmin � x � xmax, ymin � y � ymax,

9



and zmin � z � zmax. This domain is decomposed on the y � z plane into a number of

small rectangular blocks. These blocks are mapped to a logical two-dimensional Cartesian

processor grid. Each processor contains one rectangular block domain. The range of a

block on a single processor is de�ned as xmin � x � xmax, ylcmin � y � ylcmax, and

zlcmin � z � zlcmax. Here, the subscript lcmin and lcmax specify local minimum and local

maximum. The mesh grid is de�ned to store the �eld-related quantities such as charge

density and electric �eld. The number of grid points along three dimensions on a single

processor is de�ned as:

Nxlocal = int[(xmax � xmin)=hx] + 1 (18)

Nylocal = int[(ylcmax � ymin)=hy]� int[(ylcmin � ymin)=hy] +Ng (19)

Nzlocal = int[(zlcmax � zmin)=hz]� int[(zlcmin � zmin)=hz] +Ng (20)

where hx, hy, and hz are the mesh sizes along x, y and z direction respectively. The

quantity Ng refers to the number of guard grids in Nylocal and Nzlocal. Ng = 2 if the number

of processors in that dimension is greater than 1; otherwise, Ng = 1. For the processor

containing the starting grid in the global mesh, there is one more grid point along the y and

z directions. The particles with spatial positions within the local computational boundary

are assigned to the processor containing that part of physical domain.

The parallel computation starts with constructing a 2-D logical Cartesian processor grid,

reading input data from processor 0 and broadcasting it to the other processors, setting up

the local initial computational domain, initializing objects, and generating particles from the

initial distribution function. There are three approaches to generating the particles local to

the processor at the beginning of the simulation. One approach is that each processor gener-

ates the average number of particles by sampling the whole initial distribution. Then explicit

all-to-all communication is used to send the particles to the appropriate processor where it

locates. This approach has the advantage that each processor needs only to generate small

number of particles. However, the communication costs will increase with the increasing

number of processors and particles, which makes this approach less scalable. The second

10



method is that each processor generates the total number of numerical particles of initial

distribution. Only particles local to the processor are kept, and the other particles not local

to the computational domain are thrown away. This approach avoids the communication

cost and uses the same amount of time with increasing number of processors. Nevertheless,

this approach is extremely ine�cient, and the the time cost is the same regardless of the

number of processors used. The third approach is that each processor generates the average

number of numerical particles by sampling a part of initial distribution using a rejection

method [18]. This part of the initial distribution contains the computational domain local

to the processor. Hence, the particles generated from this distribution will be local to the

processor. There is no need for communication. This approach has the advantage of scaling

with increasing number of processors. The disadvantage of this approach is that the result

may not be reproducible using a di�erent number of processors partly due to the di�erence

in random number generation on each processor.

The particles generated on each processor will advance following the maps de�ned in

Section 2. If a particle moves outside the local computational domain, it will be sent to

the corresponding processor where it is located. A particle manager function is de�ned to

handle the explicit communication using MPI among two-dimensional processor grids. The

y and z positions of every particle on each processor are checked. The particle is copied

to one of its four bu�ers and sent to one of its four neighboring processors when its y or z

position is outside the local computational domain. After a processor receives the particles

from its neighboring processors, it will decide among those particles whether some of them

will be further sent out or not. The outgoing particles are counted and copied into four

temporary arrays. The remaining particles are copied into another temporary array. This

process is repeated until there is no outgoing particle on all processors to be found. Then,

the particles in the temporary storage along with the particles left in the original particle

array are copied into a new particle array.

After each particle moves to its local computational domain, a linear CIC particle-

deposition scheme is done for all processors to get the charge density on the grid. For

11



the particles located between the boundary grid and computational domain boundary, these

particles will also contribute to the charge density on the boundary grids of neighboring

processors. Hence, explicit communication is required to send the charge density on the

guard grids, which is from the local particle deposition, to the boundary grids of neighbor-

ing processors to sum up the total charge density on the boundary grids. With the charge

density on the grids, Hockney's FFT algorithm is used to solve the Poisson's equation with

open boundary conditions. Due to this algorithm, the original grid number is doubled in

each dimension. The charge density on the original grids is kept the same. The charge

density on the other grids is set to 0. The Green's function is de�ned as

Gp;q;r =
1q

(hx(p� 1))2 + (hy(q � 1))2 + (hz(r � 1))2
; (21)

where p = 1; : : : ; Nx�local + 1, q = 1; : : : ; Ny�local + 1, r = 1; : : : ; Nz�local + 1. Here, Nx�local,

Ny�local, Nz�local are the local computation grid number without including guard grids in all

three dimensions. For the grid points outside the above boundary, symmetry is used to

de�ne the Green's function on these grids.

Gp;q;r = G2Nx�p+2;q;r; p = Nx�local + 2; 2Nx (22)

Gp;q;r = Gp;2Ny�q+2;r; q = Ny�local + 2; 2Ny (23)

Gp;q;r = Gp;q;2Nz�r+2; r = Nz�local + 2; 2Nz (24)

Communication is required to double the original distributed 3-dimensional grid explic-

itly. This can be avoided by including this process into the 3-dimensional FFT. In the

3-dimensional parallel FFT, we have taken advantage of the undistributed dimension along

the x dimension, where a local serial FFT can be done in that dimension for all processors.

A local temporary two-dimensional array with size (2Nx;Nylocal) is de�ned to contain part

of the charge density at �xed z. The charge density on the original grid is copied into the

(Nx;Nylocal) part of the temporary array. The rest of the temporary array is �lled with 0.

In the case of the FFT of the Green's function, symmetry can be used to obtain the values

of the Green's function in the region (Nx + 2; Nylocal). After the local two-dimensional

12



FFT along x is done, it is copied back to a slice of a new 3-dimensional array with size

(2Nx;Nylocal; Nzlocal). A loop through Nzlocal gives the FFT along x for the three dimen-

sional array. Then, a transpose is used to switch the x and y indices. Now, the 3-dimensional

matrix has size (Ny;Nx0local; Nzlocal). Here, Nx0local is the new local number of grids in the

x dimension along the y dimension processors. A similar process is done to obtain the FFT

along the y direction for double-size grids (2Ny;Nx0local; Nzlocal). Another transpose is used

to switch the y and z indices and a local FFT along z with a double-size grid is done on all

processors to �nish the 3-dimensional FFT for the double-size grid in all three dimensions.

During the inverse parallel FFT, a reverse process is employed to obtain the potential on

the original grids. In the transpose of indices, global all-to-all communication is used.

From the potential on the grid, we calculate the electric �eld on the grid using a central

�nite di�erence scheme. To calculate the electric �eld on the boundary grid, the potential on

the boundary grid of neighboring processors is required. A communication pattern similar

to the one used in the charge density summation on the boundary grids is used to send

the potential from the boundary grids to the guard grids of neighboring processors. After

the electric �eld on the grids is obtained, it has to be interpolated from the grids onto

the local particles to push the particles. Since we have used the linear CIC scheme, the

electric �eld of particles between the boundary grid and computational domain boundary

will also depend on the electric �eld on the boundary grid of neighboring processors. A

similar communication pattern is used to send the electric �eld from the boundary grids

to the guard grids of the neighboring processors. With the electric �eld on grids local to

each processor, the interpolation is done for all processors to obtain the space charge force

on every particle. The local particles are updated in momentum space based on the space

charge force. This operation de�nes the mappingM2.

Dynamic load balancing is employed with adjustable frequency to keep the number of

particles on each processor approximately equal. A density function is de�ned to �nd the

local computational domain boundary so that the number of particles on each processor

is roughly balanced. This number depends on the local integration of the charge density

13



on each processor. To determine the local boundary, �rst, the three-dimensional charge

density is summed up along the x direction on each processor to obtain a two-dimensional

density function. This function is distributed locally among all processors. Then, the

two-dimensional density function is summed up along the y direction to get the local one-

dimensional charge density function along z. This density function is broadcast to the

processors along the y direction. The local charge density function is gathered along z

and broadcast to processors along the z direction to get a global z direction charge density

distribution function on each processor. Using this global z direction density distribution,

the local computational boundary in the z dimension can be determined assuming that each

processor contains a fraction of of total number of particles about equal to 1=nprocz. Here,

nprocz is the number of processors along the z direction in the two-dimensional Cartesian

processor grid. A similar process is used to determine the local computational boundary

in the y direction. Strictly speaking, the above algorithm will work correctly for a two-

dimensional density distribution function which can be separated as a product of two one-

dimensional functions along each direction. However, from our experience, this algorithm

works reasonablely well in beam dynamics simulation in the linear accelerator.

IV. OBJECT-ORIENTED SOFTWARE DESIGN

The above parallel particle-in-cell algorithm is implemented in an object-oriented frame-

work for the accelerator simulation. Object-oriented software design is a method of design

encompassing the process of object-oriented decomposition [19]. After analysis of the (com-

plex) physical system, the system is �rst decomposed into simpler physical modules. Next,

objects are identi�ed inside each module. Then, classes are abstracted from these objects.

Each class has interfaces to communicate with the outside environment. Relationships are

then built up among di�erent classes and objects. These classes and objects are imple-

mented in a concrete language representation. The implemented classes and objects are

tested separately and then put into the physical module. Each module is tested separately

14



before it is assembled into the whole program. Finally, the whole program is tested to meet

the requirements of problem.

Our application of the above-mentioned object-oriented design methodology to beam

dynamics studies in accelerators results in the decomposition of the physical system into �ve

modules. The �rst module handles the particle information consisting of the Beam, BeamBC,

and the Distribution classes. The second module handles information regarding quantities

de�ned on the �eld grid containing Field and FieldBC classes. The third module handles

the external focusing and accelerating elements containing the BeamLineElem base class

and its derived classes, the drift tube class, the quadrupole classes, and the rf gap class. The

fourth module handles the computational domain geometry containing the Geometry class.

The last module provides auxiliary and low level classes to handle explicit communication

and input-output containing the Pgrid2d, Communication, Utility, InOut and Timer classes.

The class diagram of the object-oriented model for a beam dynamics system is presented

in Fig. 2. Here, run-time polymorphism is used to implement di�erent external beam line

elements. A single operation using the function of the beam-line-element base class can

automatically select the appropriate function from di�erent concrete beam-line-element class

objects to execute [20]. The inheritance relation in Fig. 2 de�nes an \is" relationship among

classes. The aggregation de�nes a relation that a class has an object of another class in its

data member. The use de�nes a relation that a class uses an object of another class in its

member function. The above object-oriented design is implemented using both Fortran 90

and the POOMA C++ framework [21]. In this paper, we only show the simulation results

using the F90/MPI code.

V. PERFORMANCE TEST

The performance of the object-oriented code was tested on both the SGI/Cray T3E-900

and the SGI Origin 2000. The SGI/Cray T3E-900 is a scalable, logically shared, physically

distributed multi-processor machine with a range of con�gurations up to thousands of pro-

15



cessors [22]. Each node consists of a DEC Alpha 64-bit RISC microprocessor, local memory,

system control chip and some network interfaces. The RISC microprocessor is cache-based,

has pipelined functional units, and issues multiple instructions per cycle. The clock speed is

450 MHz. Each node has its own local DRAM memory with a capacity of from 64 Mbytes

to 2 Gbytes. A shared, high-performance, globally addressable memory subsystem makes

these memories accessible to every node. There are two-level on chip caches which can only

be cached by local memory: one with 8 KB instruction and data caches and another with

96 KB 3-way associative cache. The nodes are connected by a high-bandwidth, low-latency

bi-directional 3D torus interconnect network system.

The SGI Origin2000 is a scalable, distributed shared-memory multi-processor machine.

It consists of a number of processing nodes linked together by a multi-dimension intercon-

nection fabric. Each processing node contains either one or two processors, a portion of

shared memory, which is physically distributed locally to each node but is also accessible to

all other processors through the interconnection fabric. Each node also contains a directory

for cache coherence, and two interfaces to connect to I/O devices and to link system nodes

through the interconnection fabric. The processor used in the SGI Origin2000 is the MIPS

R10000, a high-performance 64-bit superscalar processor with 4 GB memory, 32 KB on chip

dat cache, 32 KB on chip instruction cache, and 4 MB secondary cache. The single node

clock speed for the system we used is 250 MHz. A cabinet can consist of up to 128 processor

nodes [23].

The e�ect of dynamic load balancing is exhibited in Fig. 3. It shows the largest and

smallst number of particles on one processor, as a function of time, with and without dy-

namic load balancing, on 16 processors. The total numerical particle number is 2 million

with 64 � 64 � 64 grids. We see here that with the dynamic load balance the di�erence

between the maximum number of particles and the minimum number of particles has been

drastically reduced. This demonstrates that the dynamic load balance algorithm in our pa-

per works well. In Fig. 4, we also give a comparison of the execution time on the Cray T3E

as a function of number of processors using one-dimensional and two-dimensional parallel

16



processor partitions. In this simulation, we have used 2:6 million particles and 64� 64� 64

grids. The two-dimensional partition shows better scalability and is faster than the one-

dimensional partition. This is because a two-dimensional processor partition has a more

favorable surface-to-volume ratio. Communication cost is proportional to the surface area

of the subdomain, whereas computation is proportional to its volume. Fig. 5 shows the time

costs as a function of processor number on the SGI/Cray T3E-900 and on the SGI Origin

2000 for the same problem as in Fig. 4. Good scalability of our object-oriented parallel

particle-in-cell code has been achieved. The lower execution time on the SGI Origin using

4 processors may be due to the larger cache size of this machine.

VI. APPLICATION

As an application, we simulated the beam transport through three superconducting

sections in a design of the APT linac [24]. The �rst section accelerates the beam from 211:4

MeV to 242:0 MeV, and contains six 2-cavity cryomodules. The second section accelerates

the beam from 242:0 MeV to 471:40 MeV, and contains thirty 3-cavity cryomodules. The

third section accelerates the beam to 1:03 GeV, and contains thirty �ve 4-cavity cryomodules.

The major physical parameters in the design are listed in Table 1.

Energy gain: 211:4 - 1:03 GeV

Beam current: 0.1 A

Accelerator length: 513.58 m (includes three sections)

Quadrupole gradient: 5.60-5.10, 5.50-6.05, 5.00-7.25 T/m

Accelerating gradient: 4.30-4.54, 4.30-5.01, 5.246 MV/m

Synchronous phase: -30 to -35, -30 to -42, -30 degree

The external focusing and accelerating �elds for the �rst two cryomodules are given in Fig. 6.

A quadrupole-doublet focusing lattice is used to provide transverse strong focusing and to

reduce the focusing period comparing with a singlet lattice. The external longitudinal rf

�eld is obtained from a MAFIA [25] calculation of the 5 cell superconducting cavity. For

the above physical parameters and external �eld, we have performed the simulation using

20 million numerical particles on 128� 128� 128 grids. The initial distribution used here is

17



a six-dimensional Gaussian distribution in phase space. Fig.7 gives the transverse beam rms

size and maximum amplitudes as a function of kinetic energy of beam. A jump in transverse

rms beam size around 480 Mev is due to the jump in external focusing between the second

section and the third section. The maximum transverse amplitudes set the lower bound of

the minimum aperture that can be achieved in the design. Fig. 8 shows the longitudinal

phase space plots at the end of the linac. The spiral structure suggests the formation of beam

halo due to the mismatched focusing which can be understood using a simple particle-core

model [3]. Particles in the beam halo will be lost if they move to large amplitude and strike

the beam pipe.

VII. CONCLUSIONS

In the above sections, we presented an object-oriented three-dimensional parallel particle-

in-cell program for beam dynamics simulation in linear accelerators. This program employs

a domain decomposition method with MPI. A dynamic load balance scheme is implemented

in the code. It also has better maintainability, reusability, and extensibility compared with

conventional structure based code. Performance tests on the SGI/Cray T3E-900 and the

SGI Origin 2000 show good scalability. This code was successfully applied to the simulation

of beam transport through three superconducting sections in the APT linac design.

ACKNOWLEDGMENTS

We would like to thank Drs. Barbara Blind, Frank Krawczyk, and Thomas Wangler for

RF superconducting data. This work was performed on the SGI/Cray T3E at the National

Energy Research Scienti�c Computing Center located at Lawrence Berkeley National Lab-

oratory, and the SGI Origin 2000 at the Advanced Computing Laboratory located at Los

Alamos National Laboratory. This work was supported by the DOE Grand Challenge in

Computational Accelerator Physics.

18



REFERENCES

[1] F. Sacherer, IEEE Trans. Nuc. Sci. NS-18 (1971) 1105.

[2] J. Struckmeier and M. Reiser, Particle Accelerators 14 (1984) 227.

[3] R. L. Gluckstern, Phys. Rev. Letters 73 (1994) 1247.

[4] R. Ryne and S. Habib, in: Computational Accelerator Physics, ed. J. J. Bisognano and

A. A. Mondelli, AIP Conference Proceedings 391, Woodbury, New York (1997) p. 377.

[5] B. B. Godfrey, in Computer Applications in Plasma Science and Engineering, ed. by A.

T. Drobot, Springer-Verlag, New York, 1991.

[6] A. Friedman, D. P. Grote and I. Haber, Phys. Fluids B 4 (1992) 2203.

[7] T. Wrangler, Principles of RF Linear Accelerators, John Wiley & Sons, New York, 1998.

[8] A. J. Dragt, Particle Accelerators 55 (1996) 499.

[9] E. Forest, et al., Phys. Lett. A 158 (1991) 99.

[10] E. Forest and R. Ruth, Physica D43 (1990) 105.

[11] H. Yoshida, Phys. Lett. A 150 (1990) 262.

[12] R. D. Ryne, Computational Methods in Accelerator Physics, in preparation (1999).

[13] R. D. Ryne, The linear map for an rf gap including acceleration, LANL rep. No.836 R5

ST 2629, (1991).

[14] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Adam

Hilger, New York, (1988).

[15] M. Snir, S. Otto, S. H. Lederman, D. Walker, J. Dongarra, MPI: The Complete Refer-

ence, vol. 1, The MIT Press, Cambridge, MA, (1998).

[16] P. C. Liewer and V. K. Decyk, J. Comp. Phys., 85, (1989) 302.

19



[17] P. M. Lyster, P. C. Liewer, R. D. Ferraro, and V. K. Decyk, Computers in Physics, 9

(1995) 420.

[18] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, John Wiley & Sons, New York

, (1986).

[19] G. Booch, Object-Oriented Analysis and Design with Applications, Ben-

jamin/Cummings, Menlo Park, CA, (1994).

[20] V. K. Decyk, C. D. Norton, and B. K.Szymanski, Scienti�c Programming, Vol. 6, Num.

4, IOS Press, (1997) p. 363.

[21] W. Humphrey, R. Ryne, T. Cleland, et. al., in Computing in Object-Oriented Parallel

Environments, ed. by D. Caromel, R. R. Oldehoeft, and M. Tholburn, Lecture Notes in

Computer Science, vol. 1505, 1998.

[22] http://www.cray.com/products/systems/cray3e/overview.html, (1998) .

[23] http://www.sgi.com/origin/2000/ (1998).

[24] G. P. Lawrence, High-Power Proton Linac For APT: Status of Design and Development,

in Proceeding of Linac98, Chicago, IL, 1998.

[25] T. Weiland, Int. Journal of Numerical Modelling 9, 295-319 (1996)

20



FIGURES

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

S
ec

s

Procs

2-D partition
1-D partition

FIG. 1. A schematic plot of two-dimensional decomposition on y-z domain.

21


